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It is now recognized that grain boundary sliding (GBS) is often an important mode of
deformation in polycrystalline materials. This paper reviews the developments in GBS over the
last four decades including the procedures available for estimating the strain contributed by
sliding to the total strain, ξ , and the division into Rachinger GBS in conventional creep and
Lifshitz GBS in diffusion creep. It is shown that Rachinger GBS occurs under two distinct
conditions in conventional creep depending upon whether the grain size, d, is larger or smaller
than the equilibrium subgrain size, λ. A unified model is presented leading to separate rate
equations for Rachinger GBS in power-law creep and superplasticity. It is demonstrated that
these two equations are in excellent agreement with experimental observations. There are
additional recent predictions, not fully resolved at the present time, concerning the role of GBS
in nanostructured materials. C© 2006 Springer Science + Business Media, Inc.

1. Introduction
Deformation by creep refers to the nonrecoverable plas-
tic strain occurring in a material when it is subjected to
a constant stress (or a constant load) over an extended
period of time. An interest in creep first developed more
than one-hundred years ago with the classic report by
Phillips [1] documenting the creep of a wide range of
materials from India-rubber to glass and metal wires.
This and other early reports, most notably by Andrade
[2, 3], set the scene for the extensive investigations of the
creep phenomenon which have continued to the present
day.

It is now recognized that the creep strains occurring in
crystalline materials are due to the presence of defects
within the matrix. Three distinct types of defects may be
identified: there are point defects (vacancies), line defects
(dislocations) and planar defects (grain boundaries). In
practice, each type of defect plays a role in determining
the creep behavior.

Diffusion creep refers to the flow of vacancies which
occurs in a polycrystalline material under the action of
an external stress. This flow occurs because the external
stress produces an excess of vacancies along those grain
boundaries lying perpendicular to the tensile axis and a
corresponding depletion of vacancies along those grain
boundaries experiencing a compressive stress. Thus, there
is a stress-directed flow of vacancies with the flow occur-

ring to restore equilibrium. This mechanism was first sug-
gested by Nabarro [4] and subsequently developed mathe-
matically by Herring [5]. Later, Coble [6] pointed out that
vacancy flow may occur also along the grain boundaries.
These two processes are now designated Nabarro-Herring
and Coble diffusion creep, respectively, and, despite some
arguments against the occurrence of these mechanisms [7,
8], it is now generally recognized that the theory of dif-
fusion creep is well-established and the predictions of the
models are consistent with microstructural observations
including, for example, the occurrence of precipitate-free
zones [9, 10].

Dislocations generally play the major role in produc-
ing the creep strain in polycrystalline materials, at least
under conditions where the strain rates are reasonably
rapid. The intragranular movement of dislocations takes
place when dislocation loops expand outwards from dis-
location sources (such as Frank-Read sources) and the
interactions between loops on different slip planes lead
to a process in which strain is accrued through a combi-
nation of dislocation climb and glide. In simple systems,
such as pure metals, the dislocations glide very rapidly
on their slip planes and the rate-controlling process is the
rate of climb of edge dislocations. It has been shown that
creep controlled by climb leads to a power-law relation-
ship in which the strain rate varies with stress raised to an
exponent, n, which is close to ∼4.5 [11]. However, solute

0022-2461 C© 2006 Springer Science + Business Media, Inc.
DOI: 10.1007/s10853-006-6476-0 597



40TH ANNIVERSARY

atoms may form preferentially around the dislocations in
the form of impurity atmospheres in many solid solution
alloys and these atmospheres exert a dragging influence on
the glide of dislocations so that viscous glide becomes the
rate-controlling process in these materials. Under these
conditions, it has been shown that the stress exponent is
reduced to n = 3 [12]. In practice, the situation is often
more complex because in alloys there may be a transition
with increasing stress from control by climb to control
by glide, thereby producing a transition from n ≈ 4.5 to
n = 3 [13], and at even higher stresses the dislocations
may break away from their solute atmospheres so that n
> 3 and ultimately, at the highest stresses, climb again
becomes the rate-controlling process [14]. The principles
of this break-away have been modeled in detail and the
predictions show good agreement with experimental data
[15].

It is more difficult to assess the role of grain boundaries
in creep deformation by comparison with the role of va-
cancies or dislocations. As a consequence of this complex-
ity, the principles associated with producing creep strain
through grain boundary effects have been developed more
recently. Furthermore, and as will be demonstrated in this
report, there remain some uncertainties with respect to the
precise role of grain boundaries in the new and advanced
nanostructured materials.

Grain boundary sliding (GBS) denotes the displace-
ment which occurs when, in response to an external stress,
two grains slide over each other with the movement tak-
ing place at, or in the immediate vicinity of, their mutual
interface. The possibility that GBS may occur in a poly-
crystalline material was first inferred more than ninety
years ago by Rosenhain and co-workers [16–18] from
qualitative observations of the formation of steps at the
grain boundaries of polycrystalline samples during defor-
mation. Subsequently, Moore et al. [19, 20] were the first
to make use of surface marker lines and to observe, as in
many subsequent experiments, the development of sharp
offsets on the surface of a Pb-2% Sn alloy at the points
where the lines intersected the grain boundaries. The first
demonstration of GBS in bi-crystals was reported in 1948
using Sn and a testing temperature only a few degrees
below the melting temperature [21]. Following this early
work, there were several reports of GBS in bi-crystals
using, for example, Al [22, 23], Cu [24], Sn [25] and Zn
[26].

These early reports provide information on the limited
details of GBS that were available at the time when the
Journal of Materials Science was introduced as a scien-
tific publication in 1966. Two early papers will serve to
demonstrate the level of understanding at that time. A re-
port entitled “An Investigation of Grain Boundary Sliding
during Creep,” published in volume 2, described experi-
mental measurements of GBS in a Mg-0.78 wt% Al alloy
and showed that GBS may make a significant contribution

to the overall strain in creep testing at low stress levels
[27]. A later report entitled “The Dependence of Grain
Boundary Sliding on Shear Stress,” published in volume
3, showed that the sliding offsets measured experimentally
were proportional, for four different metals, to the shear
component of the applied stress resolved in the boundary
plane [28]. These papers provided some of the earliest
information on the occurrence of GBS in polycrystalline
metals and it is now appropriate in the present paper, pub-
lished four decades later, to re-examine the role of GBS
in terms of the many developments that have taken place
over the last forty years. For convenience, a more formal
definition of GBS is presented in the following section
and the subsequent sections describe the recent develop-
ments that have led to the current understanding of creep
flow by GBS.

2. Formal definitions of GBS
It is now recognized that there are two separate, and mech-
anistically distinct, types of GBS.

The first type of GBS refers to the relative displace-
ment of adjacent grains where the grains retain essen-
tially their original shape but they become visibly dis-
placed with respect to each other. This type of GBS
is designated Rachinger sliding [29] and it occurs in
a polycrystalline matrix under creep conditions where
there is a net increase in the number of grains lying
within the gauge length along the direction of the ten-
sile stress. In practice, grains have irregular shapes in
polycrystalline matrices and it follows, therefore, that
Rachinger sliding must be accommodated by some in-
tragranular movement of dislocations within the adjacent
grains.

The second type of GBS occurs exclusively in Nabarro-
Herring and Coble diffusion creep and it refers to the
boundary offsets that develop as a direct consequence of
the stress-directed diffusion of vacancies. This type of
GBS is designated Lifshitz sliding [30] and it is illustrated
schematically in Fig. 1. Three adjacent grains are shown at
zero strain in Fig. 1a where the tensile axis is vertical and
two marker lines are scribed parallel to the stress axis at
AA′ and BB′, respectively. Under conditions of Nabarro-
Herring or Coble diffusion creep, vacancies diffuse from
the transverse to the longitudinal boundaries where this
is equivalent to the removal of layers of atoms from the
longitudinal boundaries and the plating of these atoms
along the transverse boundaries. Thus, as shown in Fig.
1b, the two marker lines remain unchanged in the lower
grain but they move closer together in the two upper grains
as material is removed from the central boundary. The
occurrence of diffusion creep leads, therefore, to offsets
in the marker lines as shown in Fig. 1b and it follows that
for Lifshitz sliding there is no net increase in the number
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Figure 1 The occurrence of Lifshitz GBS in diffusion creep for an array of
three grains: the tensile axis is vertical, AA′ and BB′ are marker lines and
the grains are shown (a) before creep and (b) after creep testing.

of grains measured within the gauge length parallel to the
tensile stress.

The processes of Rachinger GBS and Lifshitz GBS
are mechanistically different because Rachinger sliding
requires accommodation by intragranular slip whereas
Lifshitz sliding is itself an accommodation process for
conventional diffusion creep. Nevertheless, despite this
clear distinction, both processes produce similar offsets
in marker lines at the grain boundaries. Thus, it follows
that care must be taken to distinguish clearly and unam-
biguously between these two deformation processes. This
can be done by noting, for example, that the grains retain
essentially their original shapes in Rachinger sliding but
they become elongated along the tensile axis in Lifshitz
sliding. In the following sections, all references to GBS
denote Rachinger sliding except only when Lifshitz slid-
ing is specifically described with reference to diffusion
creep.

3. Estimating the contribution of GBS
to the overall strain

Many efforts have been devoted over the years to produc-
ing reliable and reproducible procedures for estimating
the contribution of GBS to the total strain. The total strain
achieved under creep conditions, εt, may be expressed in

a rigorous form as:

εt = εg + εgbs + εdc (1)

where εg is the strain associated with intragranular dislo-
cation processes within the grains, εgbs is the strain due
to Rachinger GBS including the associated accommoda-
tion through intragranular slip and εdc is the strain due to
diffusion creep including Lifshitz GBS. In practice, creep
experiments are often conducted under testing conditions
where there is a negligible contribution from diffusion
creep and Equation 1 reduces to the more convenient form
of

εt = εg + εgbs (2)

The contribution of GBS to the total strain, ξ , is then
expressed as

ξ = εgbs

εt
(3)

In order to obtain a meaningful measure of ξ , it is
first recognized that the occurrence of GBS will lead,
at any selected boundary, to the occurrence of offsets in
three mutually perpendicular directions. This situation is
illustrated schematically in Fig. 2 where there are three
orthogonal displacements, u, v and w, due to the occur-
rence of GBS between grains 1 and 2 under the action of
an applied stress, σ . Fig. 2 shows also the sliding vector in
the grain boundary plane, S, and two angles that serve to
define the boundary orientation with respect to the tensile
axis: there is an angle θ between the trace of the boundary
on the upper exposed surface and the tensile axis and there
is an additional angle ψ between the tensile axis and the
trace of the boundary on a polished surface cut perpen-
dicular to the upper surface. The sliding contribution, ξ ,
may be estimated by determining the value of εgbs from
individual measurements of one or more of these three
separate displacements.

Figure 2 The occurrence of three sliding offsets, u, v and w, when GBS occurs between grains 1 and 2 under the action of an applied stress, σ : S denotes
the sliding vector.
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It follows from first principles that the individual sliding
displacements shown in Fig. 2 are related through the
expression

u = v

tan ψ
+ w

tan θ
(4)

However, it is impractical to use Equation 4 in experi-
mental measurements of ξ because of the difficulties of
measuring the angles θ and ψ at every boundary. It is nec-
essary therefore to develop more simplified procedures.

If longitudinal marker lines are scribed on the specimen
surface prior to creep testing, it is possible to take individ-
ual measurements of u along selected lines at all points
where the marker lines intersect the grain boundaries. It
follows that the sliding strain is then given by [31]

εgbs = n�ū� (5)

where n is the number of grains per unit length, ū is the
average value of u and the subscript � denotes taking
measurements along a longitudinal line parallel to the
tensile axis.

Inspection of Fig. 2 shows that it is not easy in practice
to take measurements of u along a longitudinal traverse
but it is relatively easy to use longitudinal markers to take
measurements of the sliding offset w. For this condition,
the sliding strain is given by [31]

εgbs = k ′n�w̄� (6)

where w̄ is the average value of w, k′ is a constant and
� again denotes taking measurements along a longitudi-
nal traverse. The value of k′ was estimated theoretically
as ∼1.62 and determined experimentally as ∼1.44 [31].
Based on these results, it was proposed that Equation 6

Figure 3 The occurrence of GBS revealed by the boundary offsets in a
transverse marker line for a Mg-0.78% Al alloy tested under creep conditions
at 473 K: the tensile axis is horizontal [27].

may be used to measure the sliding contribution with a
value of k′ ≈ 1.5 [32].

An alternative procedure is to scribe transverse marker
lines perpendicular to the tensile axis and to record mea-
surements of u and the angle θ at every boundary inter-
sected by the line [33]. Fig. 3 shows an example of the
very clear offsets occurring in a transverse marker line for
a Mg-0.78% Al alloy strained to 2.49% at a temperature
of 473 K under an applied stress of 17.2 MPa: the ten-
sile axis is horizontal [27]. For this condition, the sliding
strain is given by [31]

εgbs = nt (u tan θ )t (7)

where t denotes the procedure of taking measurements
along a transverse traverse.

An alternative, and easier, experimental procedure is
to take measurements of the vertical offset v perpen-
dicular to the specimen surface using interferometry.
An example of the offsets revealed by interferometry
is shown in Fig. 4 for a Mg-0.78% Al alloy pulled
to an elongation of 1.5% at 473 K under a stress
of 27.6 MPa [34]. It is apparent that the fringes in
Fig. 4 run essentially from left to right but there are clear
discontinuities in the dark central fringes at the points
where they intersect the grain boundaries. In addition,
the fringes are continuous along the exposed facet of the
boundary between the two central grains. These fringes
have a separation of 0.27 µm and, since the discontinuities
at the boundaries in Fig. 4 are of the order of one fringe
displacement, it follows that the value of v perpendicular
to the specimen surface is ∼0.3 µm. By using an interfer-
ence microscope, it is fairly easy to rotate the fringes so
that they lie approximately perpendicular to each separate
grain boundary within any field of view and to take indi-
vidual measurements of the v offsets. For this condition,

Figure 4 The occurrence of GBS revealed by interferometry for a Mg-
0.78% Al alloy tested under creep conditions at 473 K [34].
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the sliding strain is given by [32]

εgbs = k ′′nr v̄r (8)

where k′′ is a constant, v̄ is the average value of the
v measurements and the subscript r denotes the pro-
cedure of taking measurements at randomly selected
boundaries. In practice, the value of k′′ depends upon
whether the surface of the specimen is “polished” so
that the internal boundaries intersect the free surface
at random angles or “annealed” so that the internal
boundaries intersect the free surface at angles closer
to 90◦. Experiments show the values of k′′ are ∼1.1
for polished surfaces and ∼1.5 for annealed surfaces
[35].

There appears in principle to be an alternative pro-
cedure for determining εgbs by taking measurements
of the grain shapes and using these values for a di-
rect determination of the magnitude of the intragranular
strain, εg, and hence the strain due to sliding through
Equation 2. In practice, however, it was shown using reg-
ular grids printed onto the surfaces of creep specimens
that measurements of grain shape lead to an underestima-
tion of εg, and hence an overestimation of εgbs, because
the boundaries tend to migrate during creep in order to
maintain a reasonably equiaxed grain configuration [35].
Accordingly, it is concluded that any determination of
εgbs requires direct measurements of the offsets produced
at grain boundaries as depicted in Fig. 2. Equations 5–8
are available for use in experimental investigations and
for subsequent estimates of the magnitudes of ξ using
Equation 3.

4. Developing a rate equation for GBS
A comprehensive approach was developed several years
ago for interpreting the creep behavior of crystalline ma-
terials [36]. In this approach, the behavior is quantified in
terms of the strain rate in the secondary or steady-state
stage of creep through the dependence of this rate on ex-
perimental parameters such as the applied stress, σ , the
absolute temperature, T, and the grain size of the material,
d.

It is convenient to express the steady-state creep rate,
ε̇, by a relationship of the form

ε̇ = ADGb
kT

(
b
d

)p ( σ

G

)n
(9)

where D is the diffusion coefficient (=Do exp (−Q/RT),
where Do is a frequency factor, Q is the appropriate ac-
tivation energy for the diffusive process and R is the gas
constant), G is the value of the shear modulus at the test-
ing temperature, b is the Burgers vector, k is Boltzmann’s
constant, p and n are constants defined as the inverse grain

size exponent and the stress exponent, respectively, and A
is a dimensionless constant.

Inspection of Equation 9 shows that the creep rate may
be defined uniquely in terms of the values predicted for
the four parameters Q, p, n and A. In practice, however,
the value of the dimensionless constant A is related to
structural features in the material such as the stacking-
fault energy or the presence of precipitates and it is more
convenient to compare the various creep mechanisms in
terms of the values predicted for Q, p and n. Thus, the
theories for diffusion creep predict n = 1 with p = 2 and
D = D� for Nabarro-Herring creep [4, 5] and with p = 3
and D = Dgb for Coble creep [6] where D� and Dgb are the
coefficients for lattice and grain boundary diffusion, re-
spectively. Similarly, the theoretical equations for control
by dislocation climb and dislocation glide require n ≈ 4.5,
p = 0 and D = D� [11] and n = 3, p = 0 and D = D̃ [12],
respectively, where D̃ is the coefficient for inter-diffusion
of the solute atoms. It is important, therefore, to develop
a similar relationship for the strain rate due to GBS.

An early attempt was made to develop a model for
GBS in which sliding occurred through the movement of
dislocations along, or adjacent to, the grain boundaries
through a combination of climb and glide [37] and this
model led to a relationship of the form given in Equation
9 with n = 2, p = 1 and D = D�. Since this model has
a stress exponent of 2 whereas intragranular dislocation
mechanisms have values of n ≥ 3, it follows that the model
predicts correctly the increasing importance of GBS at the
lower stress levels. Nevertheless, the model is not fully
consistent with the experimental situation because it fails
to incorporate the occurrence of intragranular slip which
is necessary in order to accommodate Rachinger GBS.
An alternative approach incorporating accommodation by
intragranular slip is described in detail in Section 9.

5. The significance of GBS in ceramics
There is a considerable current interest in the creep of
ionic solids because of the potential use of many of these
materials in a wide range of high-temperature applica-
tions. A review of the literature shows, however, that many
of the early creep experiments led to an essentially lin-
ear relationship between the steady-state creep rate and
the applied stress [38, 39] thereby suggesting that these
materials deform predominantly by Nabarro-Herring or
Coble diffusion creep. It was shown in later experiments
that many ceramic materials also exhibit stress exponents
of n ≈ 3 – 5 at the faster creep rates [40, 41] and under
these conditions the measured creep rates are independent
of the grain size over a range of grain sizes exceeding one
order of magnitude [42]. These results suggest, therefore,
that the creep properties of ceramics, including the rate-
controlling flow mechanisms, may be interpreted using
similar methods to those established for metals. In ad-
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dition, there is a similarity between the magnitudes of
the intragranular dislocation densities and the sizes of the
subgrains formed in ceramics and metals in the region of
power-law creep [43, 44]. The only significant exception
to the similarity between the creep of ceramics and metals
lies in the occurrence of ambipolar diffusion in the diffu-
sion creep of ceramics where, although both the cations
and the anions participate in the diffusion process, the two
atomic species may diffuse along different paths [45, 46].

The procedures outlined in Section 3 for estimating the
values of ξ , where εgbs is determined from the offsets
developed at grain boundaries under creep conditions, are
equally applicable to ceramic materials [47]. Furthermore,
these methods have been used successfully with several
ceramics including MgO [48] and Al2O3 [49] where the
values of ξ were estimated from measurements of the v

offsets. The same experimental methods have been used
also for determinations of ξ in geological materials such
as CaCO3 [50].

6. The role of GBS in diffusion creep
As noted in Section 2, Lifshitz sliding is an important
characteristic of diffusion creep. Furthermore, the bound-
ary offsets produced by Lifshitz sliding are similar in
appearance to those produced by Rachinger sliding and,
accordingly, the same equations can be used to estimate
the contribution of Lifshitz sliding to the total strain.

Fig. 5 shows an example of the appearance of a Magnox
ZR55 (Mg-0.55% Zr) alloy after diffusion creep to a strain
of 13.3%: this sample had an initial grain size of ∼80 µm,
it was tested at 673 K under conditions associated with
Nabarro-Herring diffusion creep using a constant stress of
2.0 MPa and the tensile axis is vertical [51]. Furthermore,
the creep behavior of this specimen was subjected to very
extensive analysis to establish unambiguously the occur-
rence of Nabarro-Herring creep [51, 52]. It is apparent also
from Fig. 5 that this alloy is especially useful for sliding
measurements because it contains hydride stringers ly-
ing parallel to the tensile axis and these stringers may
be used for a direct measure of the w sliding offsets.
Measurements of these offsets led to an estimate of ξ ≈
60% under conditions of Nabarro-Herring creep [53] and
subsequently there were other reports of sliding measure-
ments in diffusion creep with values of ξ of ∼50% in a
Mg-0.62% Mn alloy [54] and ∼51% in a Mg-0.55% Zr
alloy [55]. All of these measurements are mutually con-
sistent and they suggest a contribution from Lifshitz GBS
of ξ ≈ 50–60% in Nabarro-Herring diffusion creep.

It has been shown that the contribution of Lifshitz slid-
ing to the overall strain in diffusion creep may vary in the
range from 0 to 100% depending only upon the precise
definitions of the strains associated with Lifshitz sliding
and the grain elongation due to vacancy flow [56]. This
approach is therefore consistent with other more recent

Figure 5 The occurrence of Lifshitz GBS revealed by offsets in hydride
stringers in a Mg-0.55% Zr alloy tested under conditions where the strain
is due to Nabarro-Herring diffusion creep: the tensile axis is vertical [51].

analyses [57, 58] but it is inconsistent with an alternative
recent analysis predicting a fixed sliding contribution of
ξ ≈ 60% in diffusion creep [59].

7. The significance of GBS in superplasticity
Superplasticity refers to the ability of some materials to
pull out to very high tensile elongations without fracture.
It is now known that there are two fundamental require-
ments for achieving superplastic flow: (1) a very small
and stable grain size, typically <10 µm, and (2) a high
testing temperature, typically at least ∼0.5 Tm where Tm

is the absolute melting temperature of the material [60].
Fig. 6 shows experimental results reported for the su-

perplastic Zn-22% Al eutectoid alloy having a grain size
of 2.5 µm [61] where the lower three curves show the
variation of the flow stress, σ , with the strain rate, ε̇, for
testing temperatures from 423 to 503 K and the upper
three curves show the measured elongations to failure,
�L/Lo%, for each separate specimen, where �L is the
total increase in length at the point of fracture and Lo

is the initial gauge length. It is apparent that the varia-
tion of the flow stress with the strain rate follows a sig-
moidal relationship dividing the curve into three separate
regimes designated I, II and III. Superplastic elongations
are achieved in region II with maximum elongations to

602



40TH ANNIVERSARY

Figure 6 Variation of the elongation to failure (upper) and the flow stress (lower) for the Zn-22% Al eutectoid alloy tested at three different temperatures:
superplastic elongations are achieved in region II [61].

failure up to >2000% but there are decreases in the elon-
gations to failure at both slower and faster strain rates in
regions I and III, respectively. The strain rate sensitivity,
m, defined as the slope of the plot of stress versus strain
rate, varies from ∼0.5 in the intermediate superplastic re-
gion II to ∼0.2 in regions I and III. It is now recognized
that region III represents conventional creep behavior con-
trolled by an intragranular dislocation creep mechanism
whereas extensive experiments have shown that region I
is associated with the presence of impurities in the grain
boundaries such that this region may be eliminated when
using materials of exceptionally high purity [62–64].

Microstructural observations have shown that the grains
remain reasonably equiaxed in superplastic flow even
when the specimens pull out to very high elongations
[65]. This suggests that Rachinger GBS plays an impor-
tant role in superplasticity so that the grains slide over
each other without becoming elongated along the tensile
axis. The various equations delineated in Section 3 may
be used to estimate the values of the sliding contributions

in superplastic flow and there are various reports of the
use of these relationships for a wide range of materials
[66, 67]. Generally, measurements of this type lead to
values of ξ ≈ 50–70% in the superplastic region II but
with significantly lower values recorded for ξ in regions I
and III. Thus, the results suggest that GBS makes an im-
portant contribution to the overall strain in superplasticity
but there appears to be an additional “missing strain” of
∼30–50%.

In order to investigate the possibility of a missing strain
in the superplastic region II, it was necessary to perform
a careful examination of the procedures adopted for esti-
mating the values of εgbs in superplastic materials [68]. A
review of the relevant superplastic literature showed that,
without exception, all of the values reported for εgbs, and
thus of ξ , were obtained from measurements of the w off-
sets along longitudinal marker lines and through the use
of Equation 6. Although there were some minor differ-
ences in the values used for the constant k′ in Equation 6,
nevertheless it was concluded that these differences were
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essentially insignificant. It was shown instead through a
detailed analysis that Equation 6 breaks down when the
sliding contribution is very high. There are two reasons
for this breakdown. First, very large offsets cannot be
measured using this technique since the marker line no
longer impinges on a single boundary. Second, there is an
accommodation of the grain movement around the edges
of each grain and this introduces a specific limitation on
the magnitude of each sliding offset. It followed from this
analysis that the reported sliding contributions of ξ ≈ 45–
70% in the superplastic region II correspond essentially
to a situation where all of the strain is achieved through
grain boundary sliding and there is no additional “missing
strain” [68].

There are two features of GBS in superplasticity that are
different from GBS in conventional creep testing. First,
many of the superplastic alloys have two-phase eutectic or
eutectoid structures and this raises the possibility of mea-
suring the magnitudes of the sliding offsets on the different
types of interfaces. Experiments on the Pb-62% Sn eutec-
tic alloy showed that the largest offsets occur on the Sn-Sn
intercrystalline boundaries, there are smaller offsets on the
Pb-Sn interphase boundaries and little or no sliding oc-
curs at the Pb-Pb intercrystalline boundaries [69]. Later
work on the Zn-22% Al eutectoid alloy showed maximum
sliding on the Zn-Zn intercrystalline boundaries, less slid-
ing on the Zn-Al interphase boundaries and a minimum
sliding on the Al-Al intercrystalline boundaries [70]. The
experimental results for both the Pn-62% Sn and the Zn-
22% Al alloys are consistent with the expectation that
maximum GBS occurs on the interfaces having the high-

est values of δDgb, where δ is the grain boundary width
[70]. Second, the tensile elongations achieved in super-
plasticity are very high, often up to and exceeding 1000%,
but the equations documented in Section 3 represent vi-
able procedures only when they are used at relatively small
elongations. An attempt was made to measure the sliding
contribution at an elongation of 100% in the Zn-22% Al
eutectoid alloy but this led to an unrealistically low value
of ξ < 20% because of the obvious limitation inherent in
the sampling procedure [70]. Accordingly, experiments
were conducted to overcome this problem by performing
tests on the Zn-22% Al alloy where the magnitude of ξ

was measured both at an elongation of ∼35% and, after
repolishing the samples and scribing new marker lines at
an elongation of ∼200%, at a total elongation of ∼235%
[71]. By conducting the experiment in this way, where new
polished surfaces and new markers were generated at a
high strain, it was demonstrated that there was no diminu-
tion in the role of GBS at high elongations. It was therefore
concluded that measurements of ξ in the early stages of
deformation provide meaningful information on the flow
behavior at the much higher superplastic elongations [71].

To obtain more information on the nature of the rate-
controlling flow process in superplasticity, the experimen-
tal data shown in Fig. 6 may be plotted, for a selected
temperature of 503 K, in the form of a deformation mech-
anism map as shown in Fig. 7 where the normalized grain
size, d/b, is plotted against the normalized shear stress,
τ /G, where τ is the shear stress: Fig. 7 includes the mea-
sured experimental data appropriate to regions I, II and
III and, in addition, the theoretical predictions for the re-

Figure 7 Deformation mechanism map of normalized grain size against normalized shear stress using the experimental data for the Zn-22% Al alloy at
503 K shown in Fig. 6 and the theoretical predictions for Nabarro-Herring and Coble diffusion creep: the broken line shows the condition where the grain
size, d, is equal to the subgrain size, λ [72].
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gions of Nabarro-Herring and Coble diffusion creep [72].
It is apparent from this map that, at the higher values of
τ /G, there is a transition with decreasing grain size from
conventional intragranular dislocation creep in region III
to superplasticity in region II. It is well established in
conventional creep that subgrains are formed within the
grains during creep deformation and the average size of
these subgrains, λ, is dependent upon the applied stress
through a relationship of the form

λ

b
= ζ

( τ

G

)−1
(10)

where ζ is a constant having a value close to ∼10 for both
metals [36] and ceramics [44]. The broken line superim-
posed in Fig. 7 represents Equation 10 when the grain size,
d, is placed equal to the subgrain size, λ. It is apparent that
this line is in excellent agreement with the experimental
boundary marking the transition from region III to region
II, thereby indicating that superplasticity requires a grain
size that is sufficiently small that no subgrains are formed
during the deformation process.

8. The rate equations for GBS in creep
and superplasticity

The preceding section shows that GBS occurs in poly-
crystalline solids under two distinct conditions. First, as
a separate mechanism contributing to the overall flow of
a polycrystal under conditions of high temperature creep,
where this is equivalent to flow within region III in the
deformation mechanism map shown in Fig. 7. This be-
havior is characterized by the relationship shown earlier
in Equations 1 and 2. Second, when the grain size is very
small so that d ≤ λ, GBS represents all of the strain in
superplastic flow and deformation occurs in region II in
Fig. 7. In order to achieve an understanding of GBS at all
grain sizes, it is therefore necessary to determine the rate
equation for GBS under both of these conditions.

For superplastic deformation, the nature of the rate
equation has been determined in numerous experimental
studies. Although there are some very minor variations in
the results reported to date, these investigations generally
lead to a stress exponent of n ≈ 2, a value for the exponent
of the inverse grain size of p ≈ 2 and an activation energy
close to the value for grain boundary diffusion so that the
appropriate diffusion coefficient is Dgb [73–76]. Thus, the
rate equation for GBS for the condition where d < λ is
given by

ε̇gbs(d<λ) = A′ DgbGb
kT

(
b
d

)2 ( σ

G

)2
(11)

where A′ is a dimensionless constant having an experi-
mental value close to ∼10.

A more detailed analysis is required to obtain the rate
equation for GBS when d > λ because sliding no longer
represents all of the creep deformation but rather it oc-
curs as a creep mechanism that contributes an incremen-
tal strain to the material. The form of the relationship for
this condition was derived using data obtained with high
purity (99.995%) aluminum where creep tests were con-
ducted in tension under conditions of constant stress over
a range of temperatures from 573 to 773 K and with grain
sizes from 200 to 4000 µm [77]. It is important to note
also that the creep tests were performed under conditions
where diffusion creep made no significant contribution to
the overall strain so that the total strain was accurately rep-
resented by Equation 2. The values of ξ were determined
from extensive measurements of the v sliding offsets us-
ing interferometry with the values of εgbs estimated from
Equation 8.

In the absence of any significant contribution from dif-
fusion creep, it follows from Equation 2 that

(
1

ξ
− 1

)
= εg

εgbs
= ε̇g

ε̇gbs
(12)

Anticipating that the rate equations for intragranular
slip and Rachinger GBS are both of the form given in
Equation 9, and using the subscripts g and gbs to denote
the terms associated with intragranular deformation and
GBS, respectively, it follows that Equation 12 may be

Figure 8 Procedure for estimating the exponent of the inverse grain size
for Rachinger GBS, pgbs [77].
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re-written in the more explicit form of

(
1

ξ
−1

)
=

(
Ag

Agbs

) (
d

b

)pgbs−pg
(

σ

G

)ng−ngbs (
Dg

Dgbs

)

(13)
From creep experiments on pure Al with large grain

sizes, under conditions where there was negligible GBS
and negligible diffusion creep, it was determined that ng

≈ 4.5, pg = 0 and Qg ≈ 145 kJ mol−1, where Qg is the
appropriate activation energy for intragranular deforma-
tion [78]. These values are consistent with tabulated creep
data for polycrystalline and single crystal Al [36] and the
measured activation energy is very close to the value of
143.4 kJ mol−1 for lattice self-diffusion in pure Al [79].

Specimens having different grain sizes were tested in
creep under the same conditions of temperature (573 K)
and stress (3.5 MPa) and for the same total time to an
identical intragranular strain of εg = 0.034. Using Equa-
tion 13 with pg = 0, the experimental data were plotted as
shown in Fig. 8 to give an exponent of the inverse grain
size for Rachinger GBS of pgbs ≈ 0.9 ± 0.1. Additional
experiments were conducted at different stresses at a tem-
perature of 573 K using specimens having a grain size of
d ≈ 300 µm and with each specimen taken to an identical
total strain of ε = 0.02. These results are plotted in Fig. 9
with ng = 4.5 and pgbs = 0.9 to give a stress exponent for

Figure 9 Procedure for estimating the stress exponent for Rachinger GBS,
ngbs [77].

Figure 10 Procedure for estimating the activation energy for Rachinger
GBS, Qgbs [77].

Rachinger GBS of ngbs ≈ 3.3 ± 0.2. Finally, specimens
with a grain size of ∼600 µm were tested at different
stresses to a constant total strain of ε = 0.02 and with
the tests conducted at different temperatures in the range
from 573 to 773 K. These data are plotted in Fig. 10 using
Equation 13 with a stress exponent of ng – ngbs = 4.5 –
3.3 = 1.2, an exponent of the inverse grain size of pgbs =
0.9 since pg = 0 and with an activation energy, Q, equal to
the value for lattice self-diffusion (143.4 kJ mol−1). From
this plot, the activation energy for Rachinger GBS was
estimated as Qgbs ≈ 145 ± 14 kJ mol−1.

It follows from these experiments that the strain rate for
Rachinger GBS in power-law creep has a stress exponent
of ngbs ≈ 3, an exponent for the inverse grain size of pgbs

≈ 1 and an activation energy similar to the value for lattice
self-diffusion so that the temperature dependence may be
incorporated into the rate equation through the value of
D�. Thus, the strain rate for Rachinger GBS occurring
under conditions where the grain size is larger than the
sub-grain size is given by a relationship of the form [77]

ε̇gbs(d>λ) = A′′ D�Gb
kT

(
b
d

)(
σ

G

)3

(14)

where A′′ is a dimensionless constant.

9. A unified model for GBS in creep
and superplasticity

The preceding section shows there are two separate and
distinct relationships for Rachinger GBS. When the grain
size is large in conventional creep, the rate of sliding is
given by Equation 14; whereas when the grain size is
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smaller than the equilibrium subgrain size, no subgrains
are formed, flow occurs by superplasticity and the rate
of sliding is given by Equation 11. A unified approach is
therefore needed to account for these two separate rela-
tionships [77].

It is reasonable to assume that Rachinger GBS occurs in
an essentially similar way in both creep and superplastic-
ity. Furthermore, there are experimental results showing
that the total amount of sliding varies from point to point
along any selected grain boundary [80], thereby suggest-
ing that Rachinger sliding occurs through the movement
of extrinsic dislocations along the boundaries. As noted
earlier, Rachinger GBS requires accommodation through
the movement of intragranular dislocations so that dislo-
cations move into the adjacent grains and pile up at the
first obstacle. Two examples of this process are illustrated
schematically in Fig. 11. In conventional creep with a
large grain size so that d > λ as shown in Fig. 11a, the
stress concentration at the triple point A leads to intra-
granular slip in the adjacent grain and these dislocations
pile up at the first subgrain boundary at B. By contrast, no
subgrains are formed in superplasticity when d < λ in Fig.
11b and the stress concentration at the triple point C leads
to intragranular slip in the opposing grain and the dislo-
cations then pile up at the opposite grain boundary at D.
The rate equations for these two processes are governed
by the rate of removal of dislocations from the heads of
the pile-ups at B and D.

The stress at the head of a pile-up, σ p, is given by [81]

σp ≈ 2Lτ 2

Gb
(15)

where L is the pile-up length and τ is the magnitude of
the shear stress acting on the slip plane in the direction
of the Burgers vector. The climb velocity can be intro-
duced for the two separate conditions shown in Fig. 11a

Figure 11 A unified model for Rachinger GBS under (a) conventional
creep conditions when d > λ and (b) superplastic conditions when
d < λ.

and b. In Fig. 11a, the pile-up length of the accommo-
dating dislocations is equal to the subgrain size, λ, where
λ varies inversely with stress through Equation 10 and
climb occurs intragranularly so that the appropriate dif-
fusion coefficient is D�; whereas in Fig. 11b, the pile-up
length is equal to the grain size, d, and the dislocations
climb into the opposing grain boundary so that the appro-
priate diffusion coefficient is Dgb. Using this approach, it
has been shown that these mechanisms lead directly to the
relationships given by Equations 11 and 14 where A′ has a
predicted value of ∼10 in Equation 11 which is in agree-
ment with a direct experimental measurement of A′ ≈ 12
[73, 82] and A′′ in Equation 14 has a predicted value of
∼102. It has been demonstrated also that this value of A′′ is
consistent with the experimental deformation mechanism
map shown in Fig. 7 [77].

10. The extension of GBS to nanostructured
materials

In principle, it seems reasonable to assume that the model
developed for Rachinger GBS in superplastic materials,
where d < λ, will be equally applicable for even smaller
grain sizes down to the nanostructured range where d
< 100 nm. In practice, however, there is increasing ev-
idence suggesting the occurrence of new and different
mechanisms for GBS in nanostructured solids.

It is reasonable to conclude from Equations 11 and
14 that Rachinger GBS is a diffusion-controlled pro-
cess and therefore, in agreement with early experimen-
tal evidence [83], it is not important in deformation at
low temperatures. However, there are recent predictions
of the occurrence of low-temperature GBS when using
three-dimensional molecular dynamic computer simula-
tions to model the behavior of nanocrystalline solids [84–
88]. Furthermore, there is direct evidence for the advent
of GBS in electrodeposited Cu having a grain size of
only ∼28 nm [89]. There is evidence also for the occur-
rence of GBS in ultrafine-grained materials which were
processed using procedures involving the introduction of
severe plastic deformation (SPD) as in equal-channel an-
gular pressing or high-pressure torsion [90–92]. A proba-
ble explanation for the effect after SPD processing is that
the materials contain a very high density of extrinsic dis-
locations, the grain boundaries are in a non-equilibrium
configuration and the extrinsic dislocations permit rela-
tively easy GBS [93]. This proposal is supported indirectly
by experimental evidence, obtained using high-resolution
electron microscopy, documenting the presence of high
dislocation densities adjacent to the grain boundaries af-
ter SPD processing [94]. There is also a proposal that the
width of the grain boundaries is sufficiently large in nanos-
tructured materials that it is possible to develop macro-
scopic sliding along planes extending over distances that
are much larger than the individual grain size [95, 96]
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and there is direct experimental evidence for this type of
behavior after SPD processing to produce ultrafine-grain
sizes in Cu [97], Ni [97] and Al [98].

Although much of the information on nanostructured
and ultrafine-grained materials is in an early stage and
not yet fully quantified, there is increasing evidence for
the advent of new and additional contributions from GBS
in polycrystalline materials when the grain sizes are ex-
tremely small. This extension of GBS into the nanostruc-
tured range is an exciting new development which will
undoubtedly provide stimulating opportunities for further
developing the processes and mechanistic aspects of GBS
over the next few decades.

11. Summary and conclusions
1. There are two types of grain boundary sliding (GBS):

Rachinger GBS which is accommodated by the movement
of intragranular dislocations and Lifshitz GBS which ac-
commodates diffusion creep. These two processes pro-
duce similar offsets in surface marker lines but Rachinger
GBS produces no grain elongation whereas Lifshitz GBS
is associated with grain elongation through stress-directed
vacancy flow.

2. Procedures are available for measuring the contribu-
tion of sliding, ξ , to the total strain during the deformation
of polycrystalline materials. These procedures have been
used to measure Rachinger GBS in metals, ceramics and
geological materials. They have been used also to measure
Lifshitz GBS in diffusion creep.

3. Rachinger GBS occurs under two distinct condi-
tions: in conventional creep when the grain size, d, is larger
than the equilibrium subgrain size, λ, and in superplastic-
ity when d is smaller than λ. A unified model has been
developed to incorporate both types of Rachinger GBS
and the resultant rate equations are in excellent agree-
ment with the experimental observations.

4. There is recent evidence, in the form of computer
modeling and experimental observations, suggesting an
increasing importance of GBS when the grain size is ex-
tremely small. However, the precise role of GBS in these
nanostructured and ultrafine-grained materials is not fully
understood at the present time.
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